#pragma once #include "renderable.h" Renderable::Renderable(Model* model) : _model(model) {} Renderable::Renderable(Model* model, glm::vec3 position) : _model(model), _position(position) {} void Renderable::setModel(Model* model) { _model = model; } void Renderable::move(glm::vec3 deltaVec) { _position += deltaVec; } void Renderable::setPosition(glm::vec3 position) { _position = position; } void Renderable::rotate(glm::vec3 axis, float deltaAngle) { _rotation = glm::rotate(_rotation, deltaAngle, axis); } void Renderable::setRotation(glm::vec3 axis, float angle) { _rotation = glm::rotate(glm::mat4(1.0f), angle, axis); } void Renderable::scale(float deltaScale) { _scale += deltaScale; } void Renderable::setScale(float scale) { _scale = glm::vec3(scale); } void Renderable::render(ShaderProgram shader) { // Check if initialized if (_model == nullptr) { Logger::error("Tries to render an uninitialized renderable object"); return; } // Set model matrix shader.setUniform("model", modelMatrix()); // Render _model->render(shader); } // check here to get global boundary // must check before get boundary void Renderable::checkBoundary() { std::vector temp = {_model->upperBoundVex(),_model->lowerBoundVex()}; _lowerBoundVex = glm::vec3(3e36, 3e36, 3e36); _upperBoundVex = -_lowerBoundVex; auto model = this->modelMatrix(); // transform matrix // Bit calculation for (int i = 0; i < 8; i++) { glm::vec4 vx = glm::vec4(temp[(i & 4) >> 2][0], temp[(i & 2)>>1][1], temp[i & 1][2], 1.0f); auto vex = model * vx; // Transformed vertex position for (int j = 0; j < 3; j++) { _lowerBoundVex[j] = _lowerBoundVex[j] < vex[j] ? _lowerBoundVex[j] : vex[j]; _upperBoundVex[j] = _upperBoundVex[j] > vex[j] ? _upperBoundVex[j] : vex[j]; } } }